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Prediction and Measurement of Natural Vibrations of 
Multistage Launch Vehicles 

VERSOS L. ALLEY JR.' AKD SUMXER A. LEAD BETTER^ 

N A S A  Langleg Research Centei, Langley Air Force Base, J'u. 

The results of an analytical and experimental study todetermine the first three natural fre- 
quencies of a four-stage research rocket are presented. A matrix recurrence equation is given 
which provides a convenient means for solving for the fundamental and higher modes of 
oscillation of the structure. Vibration tests were performed in a vertical fixture that afforded 
g o o d  unrestrained characteristics in one plane of motion. The results of studies of the effects 
of looseness in interstage connections, the unsymmetric behavior of a supposedly symmetrical 
structure, nonlinear characteristics, and an empirical treatment of joint tlexibility are dis- 
cussed. Good agreement between the calculated and measured data is shown. 

Nomenclature 

= matrix of mass characteristics 
= coordinate about the x origin to  joint u, in. 

= modulus of elasticity, psi 
= moment of inertia of structural cross-sectional area, 

[ B  J 
cu 
[ D ( s ) ]  = special sweeping matrix for the sth mode 
E 
Z 

L = overall length of the vehicle, in. 
8 -  1 

m = total mass of the system = m,, Ib-secz/in. 
r = O  

m, = rth discrete mass, Ib-sec*/in. 
m, 
n 
P 
? 

in.' 

= mass distribution per inch of length, Ib-sec*/in.* 
= number of the highest mode sought in the solution 
= number of discrete masses representing the system 
= radius of gyration of the system about the center of 

gravity, in. 
U = total number of clastic joints considered in the system 
X 

XT 
x 

Yr 
YL 
yr(S) 

= coordinate having its origin at the center of the zeroth 

= z coordinate to the rth discrete mass, in. 
= distance to  the center of gravity of the total discrete 

= displacement of the rth mass, in. 
= tip deflection used for normalizing mode data, in. 
= rth coefficient of the modal column for the sth mode, 

mass, in. 

mass system from the x origin, in. 

in. 

aftermost point of the vehicle, in. 
Qa.3 = deflection influence coefficient for beam deflection 

only; deflection a t  x = z1 due to a unit load at z = 
x, when cantilevered at x = 0, in./lb. 

6,.j(u) = deflection influence coefficient considering elastic rota- 
tion of joint u only; deflection at x = xt due to a 
unit load at x = I, when cantilevered at x = 0, 
in./lb 

2 = parallel coordinate system to x having its origin at the 

KU 

o r , n  

= joint rotation constant for joint u, rad/in.-lb 
= total deflection influence coefficient considering beam 

and joint contributions; deflection at x = xr due to 
a unit load at x = I, when cantilevered at x = 0, 
in./lb 

WS = circular frequency for vibrations of the sth free-free 
natural mode, rad/sec 

Matrix notation 

{ 1, 1 1, [ I, 1 1, 111 designate column, diagonal, square, 
row, and unit matrices, respectively 

Presented at the A R S  Launch Vehicles: Structures and Ma- 
terial~ Conference, Phoene, Ariz., April 3-5, 1962. 

Aero-Spsce Technolo 
Aero-Space Technolo%: 

K the design of slender multistage boosters for upper at- I mospheric and space research probes, the accurate deter- 
mination of the natural vibrations of the structure for flight 
conditions is an essential effort in the engineering program. 
Many of these vehicles are spin stabilized to prevent the 
vehicle from executing undesirably large dispersions with 
respect to  the programmed trajectory. Spinning of the 
vehicle, Iiowever, introduces the possibility of incurring 
resonance or near resonant vibrations during flight. The high 
dynamic loads that result from spin resonance combined with 
the many other loads that a vehicle normally encounters in 
atmospheric flight would be a sure cause of failure for most 
highly optimized structures. 

Frequently, an accurate knowledge of the natural frequen- 
cies, including experimental verification, is desirable in 
vehicles where the spin stabilization programs with their wide 
tolerances in spin rate fall in the narrow band between the 
short-period aerodynamic frequency and the first natural 
frequency of body bending. In addition, an understanding of 
the inherent frequencies that are likely t o  be experienced in 
the structure is of value in establishing proper instrumenta- 
tion for monitoring environmental responses. Modal informa- 
tion is also essential to  projw positioning of guidance sensing 
devices and for in1 estigating the stability characteristics of 
vehicles with closed loop control systems. The orthogonal 
properties of the mode shapes make them desirable functions 
for use in series solutions involving generalized coordinates, 
widely known as "modal form solutions." 

The transient mass and structural characteristics of a typi- 
cal niultistage rocket vehicle require that natural mode evalus- 
tions be made, at least for the ignition and burnout times of 
each stage of flight and frequently at other points of investi- 
gation, such as Mach I ,  maximum dynamic pressure, and 
minimum stability. Transient wind response studies de- 
veloped around modal form solutions that consider variable 
coefficients in the equations of motion frequently require that 
the natural modes and their related properties be defined as 
often as 10 times during first-stage flight. These stringent re- 
quirements involve substantial engineering effort and thereby 
justify the development and organization of adequate tech- 
niques for calculating modal data. They also emphasize the 
importance of performing experimental investigations to as- 
certain the suitability of the methods used. 

In  this paper, equations of motion are presented for the 
free-free natural vibrations of rocketlike structures, and results 
of the application of the equations to an actual four-stage 
space test vehicle are given. The analytical procedure con- 
sists of a matrix formulation tha t  permits the coordination of . Keprintd  from AIAA JOCRSAL 
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Fig. 1 Principal features 
of test apparatus 
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many computational stages into a single matrix equation from 
which the frequencies and mode shapes of the system can be 
obtained. 

A comparison between the calculated and measured 
natural frequencies and mode shapes is furnished. Considera- 
tion is also given, in the experimental test program, to the 
lack of symmetry in a supposedly symmetrical vehicle, the 
linearity of response, structural damping, and the influence of 
looseness in the screwed joints. 

Apparatus and Test Procedure 

Description of Apparatus 

Test vehicle 

The full-scale four-stage solid propellant vehicle shown in 
Fig. 1 was used as the test specimen. All of the rocket types 
have been used, either individually or in combination in aero- 
space research probes. The test vehicle was made of the 
following rockets: first stage, Lance; second stage, Lance; 
third stage, Recruit; fourth stage, T-55. 

The condition studied was burnout of the first stage. The 
second and third stages of the test vehicle were loaded with an 
inert mass having about the same density and stiffness as the 
solid fuel. Concentrated masses were added to the fourth 
stage to simulate the fuel and instrumentation. The inter- 
stage structural connections and separation devices employed 
in the test vehicle were one-piece, externally threaded, 
flanged bulkheads, generally referred to as blowout dia- 
phragms. The stages are thus threaded together upon the 
separation diaphragms. The effects of the looseness of these 
interstage connectors on the natural frequencies of the system 
were studied as part of the investigation. 

Test stand 

The suspension system shown in Fig. 1 was constructed so 
that the vehicle, when placed in the vertical attitude, could 
approach the unrestrained condition of free flight in one 
plane. An adjustable clamp, supported by two cables 
located in a longitudinal plane of the vehicle and positioned 
at or near the lower nodal point, supported the vehicle's weight 
without contributing a significant restraint to motions normal 
to  the plane of the cables. An upper support stabilized the 9 vehicle in the upright position and was composed of two 
spring-loaded cables running normal to the vehicle's center- -2 line and in the plane of the lower support cables. This sup- 

s port was located a t  or near an upper nodal point. During 
31 the tests it was found that the upper support could be loosened 

and the vehicle easily could be held vertically by holding it by 
hand a t  the upper nodal point. 

f .j 
1 -  Shaker sys tent 

A 50-lb vector force electromagnetic exciter was connected 
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Fig. 2 Vehicle mass distribution 

to the vehicle a t  a point 103 in. from the bottom of the first 
stage, as shown in Fig. 1. The exciter proved to be well 
matched to the vehicle for purposes of driving the first three 
natural modes of the system. 

Instrumentation 

Eight strain-gage accelerometers were located slang the 
length of the vehicle, two on each stage near the junctions, to 
measure displacements a t  the stations. The outputs from 
the accelerometers were fed through amplifiers to an oscillo- 
graih recorder for permanent records of the vibration data. 
The accelerometer data were reduced to obtain the natural 
frequencies, mode shapes, and structural damping of the 
vehicle. The accelerometers were attached to an adapter de- 
signed in such a manner that a cavity between the adapter 
and the vehicle could be evacuated with a vacuum pump to 
enable the accelerometer to be held in place by means ef 
atmospheric pressure. 

Test Procedure 

The first three mode shapes and the corresponding fre- 
quencies of the vehicle were determined with the lower sus- 
pension support or clamp a t  two different station locations 
(tests 1 and 2) and with the vehicle rotated 90" about the 
axis of symmetry from the original condition (test 3 ) .  The 
latter test was conducted to investigate the possibility that 
allowable tolerances in machining mating parts and fabrica- 
tion tolerances might result in unsymmetrical bending stiff- 
ness of the joints. Theoretically, in all aspects, the vehicle 
was designed to be symmetrical about the longitudinal axis. 

Measurements were also made to determine the effects of 
joint tightness and amplitude of oscillation on the frequency 
of the first natural mode with the vehicle suspended as during 
test 3.  In  order to study the effects of joint looseness, vibra- 
tion tests were made with the joints between the first and 
second stages unwound by increments to 80" of relative rota- 
tion. The stages separated a t  the rate of 0.00046 in./deg of 
rotation. 

The accelerometer on the first stage nearest the exciter was 
employed as the control instrument and was used to define 
the amplitude of oscillation. The damping coefficient was de- 
termined by observing the decay of the vibrations. 

Vehicle Structural Properties 

The optimum strength-weight requirements on space 
vehicles result in highly complicated structures whose mass 
and stiffness distributions are difficult to establish. In  Fig. 2 
the mass per inch parameter of the test vehicle is plotted 
against the normalized axial coordinate z/L.  These data il- 
lustrate the severe lack of symmetry and the wide departure 
of the typical launch vehicle from the uniform distribution. 
The total weight of the vehicle as tFted was 2687 Ib. Two 
coordinate systems are referred to in this paper and are indi- 
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Fig. 3 Vehicle flexural stiffness distribution 

cated on Fig. 2. The z coordinate defines distances along the 
length of the vehicle from the aftermost point, and the z coor- 
dinate is parallel to z but has its origin a t  z = 13.36 for the 
test vehicle. The z origin is the center of the first mass (mo) 
of the equivalent discret,e mass system used in the analysis. 

In Fig. 3, the discontinuous and highly variable nature of 
the flexural stiffness coefficient EI is shown. These data il- 
lustrate the typical complexity of rocket structures and the 
degree of definition used in defining the function for an ac- 
curate calculation of the natural modes and frequencies. The 
transition sections between the standard rocket motors are 
the most difficult regions to define and generally are the 
spaces that contribute a major part to the flexibility. In 
computing the EI data  of Fig. 3, all changes in diameter of 
the load carrying structure were considered mechanically 
without modifications or devising equivalent systems. In 
regions where this technique failed to  express adequately the 
nature of the flexure, rotation constants were employed which 
are discussed in a subsequent section. 

Analytical Procedures 

Equations of Motion 

The analytical process that was used for computing the 
theoretical frequencies and mode shapes for the study is 
derived and discussed in detail by Alley and Gerringer.3 The 
analysis is developed around a discrete mass representation of 
the continuous system and the loaddeflection relationships 
are equated by use of deflection influence coefficients. The 
inherent nature of the discrete mass-influence coefficient type 
of problem makes it ideal for matrix notation, and the use of 
matrices permits the expression of a single final equation from 
which both the frequencies and natural mode shapes can be 
obtained. The following equation, obtained from Eq. [20] 
of the paper by Alley and Gerringer, is the ge‘neral matrix 
expression from which both the fundamental and higher 
natural modes of vibration were computed by matrix iteration. 

[I! 
r = 1 , 2 , 3  . . . p - 1 

where the various parametric matrices are defined as follows: 

(l/u,W f v r ( s ) I  = [B1[~,,,lLmr/ml [D(s)lb,(s)1 

~ 

Alley, V. L., Jr. and Gerringer, A. H., “A matrix method for 
the determination of the natural vibrations of free-free unsym- 
metrical beams with apf+cation to  launch vehicles,” NASA ‘rx D-1247 (1962). . 

[u,,,] = influence coefficient matrix 

~m,/’ml = mass matrix 

and 

y7(s = 0)  = 0 

Eq. [I] is a recurrence equation in that, if the sth natural 
mode and frequency are desired, the s = 1 through s - 1 
modes must have been previously determined. If the number 
of discrete masses representing the system is p ,  then the order 
of the given matrices is p - 1. There are p - 1 linearly inde- 
pendent eigenvectors, of which p - 2 are the flex5ble mode 
shapes, and one, associated dith a zero eigenvalue, has no 
physical significance. The B matrix is a distinct function of 
the mass characteristics of the system. The a,,, matrix con- 
tains the basic flexural relationships of the system. The D(s) 
matrix is a special sweeping matrix appropriate to the specific 
orthogonality relationships of the modal columns. The ortho- 
gonality relationships differ from most other similar solutions 
because the modal columns are not complete for the system 
in that yF0 is omitted. The orthogonality relationship ap- 
plicable to the incomplete modal column is 

and the omitted end displacement yo(i) from the modal column 
yr.(i) is readily obtained by 

[3 1 

where yo fails to appear in the modal column, since the origin 
of the 2: coordinate system and the reference for the influence 
coefficients are taken a t  the position of m. This selection for 
the position of the x origin is advantageous in that it reduces 
the order of the matrices to p - 1 for a system having p 
masses. 

Number of Discrete Masses 

The number of masses used in Eq. [ 1 ] should be based pri- 
marily on the accuracy desired for the highest mode to be ex- 
tracted and the capability of available computing equipment 
to handle large matrix iterations. The results of a study of the 
influence of the number of masses on the errors in frequency 
and mode shapes of a uniform free-free beam are given in the 
paper by Alley and Gerringer. It was found that, for the 
first five modes, errors in frequency resulting from lumping 
mass can be held to within 1% by the use of the following 
approximate rule: p = 13(n)lI3, where n is the number of the 
highest mode desired and p is the number of masses to  be used. 
This rule is stated to afforded an approximate guide for 
establishing the number of masses to  be used in calculating 
asymmetrical beam systems such as the rocket vehicle con- 
sidered in this paper. The computed modal data submitted 
with this report were calculated considering 31 discrete masses 
(p = 31). This number should effectively remove all sig- 
nificant lumping errors from the computed data. 

Influence Coefficients 

The influence coefficients u , , ~  required in Eq. [ l]  must be 
cantilever beam influence coefficients fixed at the 2 origin. 
The appropriateness of the influence coefficients in represent- 
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ing the actual structure will depend largely upon the skill of 
the analyst in interpreting the structural plans and the in- 
clusion of secondary effects when necessary. The influence 
coefficients used in the determination of the calculated data 
for this paper were computed by consideration of elementary 
beam flexure with the addition of local rotations due to 
joints. The influence coefficients were expressed in two 
parts: 

u = u  

[4 1 
u = l  

where ai,j is that portion of the influence coefficient resulting 
from beam flexure only and given by 

ai.; = $ dx - ( Z j  + X i )  x 

ci d x  + xixi  ci $ dx j 2 i [5] 

and 6(u),,, is the contribution to the influence coefficient due 
to local rotation of the uth joint of which there are 0 such 
joints. It is given by 

6(u)i,j = ~ ~ ( 2 ,  - cu)(x,  - c,) [6] 

The influence coefficients applicable to the specific problem 
are obtained by a point-by-point summation of deflections 
due to the rotation of the joints and the deflections resulting 
from flexure of the structure. The use of Maxwell’s reciprocal 
law cr,,] = u,., substantially reduces the necessary computa- 
tions. 

From Eq. [ 5 ]  it  can be seen that the evaluation of the in- 
fluence coefficients will involve the determination of the in- 
tegrals of the functions x2/EI ,  x /EI ,  and 1/EI.  In  most 
actual applications, these integrals must be determined by 
numerical integration. Results of an investigation of the 
error in the natural frequencies of a uniform beam which may 
be associated with the use of trapezoidal integration are given 
in the forementioned paper by Alley and Gerringer (see foot- 
note 3). It was found that the integration errors introduced 
by the trapezoidal process tend to counteract the errors in- 
troduced by the discrete mass analogy, and it was indicated 
that the maximum size of the integration interval should not 
exceed gc of the vehicle’s length. 

valid when x l ,  x ,  > c ,  
= 0 when x,, x ,  5 e,  

Joint Rotation Effects 

It has been observed in many rocket vehicles that sig- 
nificant local contributions to flexure frequently originate at 
joints and that these joint effects must be included in analyses 
involving flexure. Contributions of the joints to the deflec- 
tions generally defy rigorous analytical description. Such 
contributions are consistently encountered from looseness in 
screwed joints, thread deflections, flange flexibility, plate and 
shell deformations that are not within the confines of beam 
theory, etc. Since it is generally impractical to evaluate these 
effects analytically, the problem has been treated empirically 
a t  NASA Langley Research Center with satisfactory results 
in the determination of natural vibration characteristics and 
aeroelastic problems. From limited measurements and 
observations of the inordinate behavior of typical rocket 
vehicle joints, the order of magnitude of rotations resulting 
from moment loading have been noted and recorded as “joint 
rotation constants.” These constants K, are defined as the 
measure of the local rotation of the structure due to the ap- 
plication of bending moment, radians per inch-pound. 

Admittedly, many typical local deflections are highly in- 
ordinate and nonlinear, and, for such cases, the linear em- 
pirical approach can only hope to provide an equivalent 
eBect. Also, experience has shown that considerable variation 
in the behavior of similar joint designs can result from varia- 

BUTT WELDED S K . N  
KEAVY BOLTED, PRELOADED 

GOOD JOINT 
HEAVY FLANGE BOLTED 
THREADED DIAPHRAGM 
MARMAN BANDS 

W MODERATE JOINT 
RIVETED, LAPPED 
RIVETED TO INNER RING 
SCREW SECTION WITHOUT BUTT 

1 - BRACKET LOOSF JOINT 

EQUALLY SPACED BRACt 

Fig. 4a Schematic diagrams of various types of joints 

Fig. 4b Joint rotation constants 

tion in fabrication skill. However, it should be kept in mind 
that estimates of K, are approximations to  what should 
normally be a secondary influence in a good design, and it is 
upon this premise that such empirical means have been em- 
ployed resulting in consistently improved accuracy of modal 
data. Invariably, computed mode data on rocket vehicles 
which disregard such local influences will result in frequencies 
higher than actual ; therefore, any reasonable approximation 
to joint behavior will move the computed results in the proper 
direction. Nevertheless, the possibility of assuming joint 
factors unreasonably large does exist, and consequently such 
efforts may result in greater errors than would be experienced 
if totally ignored. A guide to joint evaluation which should 
provide a simple means for approximating the joint rotation 
constants in a typical rocket vehicle is submitted as Fig. 4. 
A variety of typical rocket vehicle joints are illustrated and 
classified from excellent to poor in light of their stiffness on 
Fig. 4a. Repeated experiences with bending resulting from 
local joint rotations has led to the classification shown. The 
curves of Fig. 4(b) were constructed around 10 measured 
quantities of K~ for a variety of different classes of joints. Be- 
cause of the limited quantity of measured data, the curves 
that show the variation in K, with diameter were not em- 
pirically established but were based on the assumption that 
K” is inversely proportional to the third power of the diameter. 
This is in accordance with the theoretical variation in flexibil- 
ity of geometrically similar joints, and the result,ing curves 
proved to be in good agreement with the measured data. In- 
formation of the type of Fig. 4 is primarily useful to designers 
who repeatedly are using the same types of joints in a variety 
of rocket vehicle assemblies. 

It is improbable that the factors contributing to  so-called 
joint rotation effects will ever be completely amenable to 
analytical treatment, which leaves, then, two major avenues 
of approach to their solution: first and most appropriate, to 
design structures to avoid most of t$e geometries that  defy 
analysis and permit inordinate behaviors; and second, as a 

h 
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NORMALIZED 
DEFLECTIONS 

Fig. 5 Comparison of experimental and calculated natural mode 
shapes 

last resort, to use empirical joint rotation data such as sub- 
mitted in Fig. 4 for various classes of fabrications. 

The data submitted as Fig. 4 are from limited observations, 
and considerable improvement in this approach should re- 
sult from a finer classification of hardware and from a greatly 
increased sampling of joint data. 

Results and Discussion 

Presentation of Results 

Typical results of the experimental measurements and the 
analytical study of the first three natural mode shapes of the 
four-stage test vehicle are presented in Fig. 5. The experi- 
mentally and analytically determined frequencies of the first 
three natural modes are presented in Fig. 6. The results of an 
experimental study of the effects of joint looseness on the re- 
sponse of the test vehicle are presented in Figs. 7 and 8. The 
damping coefficient, which is the familiar structural damping 
coefficient g defined as the ratio of twice the equivalent 
viscous damping to the critical damping, was det,ermined also 
for the vehicle for the outputs of the accelerometers during 
the decay of the oscillations and was found to be of the ex- 
pected magnitude, namely, in the order of 0.04,0.05, and 0.06 
for the first, second, and third modes, respectively. 

Comparison of Experimental and Analytical Results 

Typical results of the experimental and analytical studies 
of the first three mode shapes are shown in Fig. 5.  The data 
are presented on a plot having the normalized deflection as 
the ordinate and the normalized length of the vehicle as the 
abscissa. The analytically determined mode shapes are indi- 
cated by the solid curves, and the normalized experimentally 
determined deflections are shown as the open symbols. Tests 
were conducted with various driving forces, support loca- 
tions, and with the driving force applied in either the normal 
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Fig. 6 Comparison of eberimental and calculated natural 
frequencies for three test conditions 
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Fig.  7 Variation of natural frequency of first mode with joht 
looseness and amplitude of oscillation 

or transverse plane. The results show that the computed 
mode shape is in excellent agreement with the measured 
mode shapes for all test conditions. Seither the magnitude 
of the driving force, the location of the lower support, nor the 
rotation of the vehicle about its longitudinal axis had any 
appreciable effect on the first two mode shapes. I t  was ob- 
served, however, that  there was a small deviation between the 
measured and calculated third mode shape in the upper stage 
when the vehicle was rotated 90". 

The results of the experimental and analytical study of the 
first three natural frequencies are shown in Fig. 6. The data 
are presented in tabular form showing a comparison of calcu- 
lated frequency to the average measured frequency for the 
three test conditions. The average of the first mode fre- 
quencies determined in all test conditions differed from the 
calculated frequency by less than 1%. For all cases measured, 
there was a spread in the test data of 2%. The agreement of 
the test 2 results, where the position of the lower support was 
nearly ideal, was excellent. The frequency of the vehicle for 
the same support position, but with the vehicle rotated 90" 
about its longitudinal axis, n-as within 2% of the calculated 
value. 

The average measured frequency for the second mode was 
about 8% lower than the calculated values. There was a 
spread of 497, in the measured natural frequencies of the 
second mode. The second mode test results supported the 
findings in the first mode studies of different vibration charac- 
teristics for motions in longitudinal planes normal to each 
other. A 3% reduction in second-mode frequency was ob- 
served in test 3 for the vehicle rotated 90" about its longi- 
tudinal axis. 

The average measured frequency of the third mode was 
12% lower than the calculated. There was a spread of 18% 
in the value of the experimentally determined frequencies. 
The lack of symmetry for oscillations in longitudinal planes 
normal to  each other was quite apparent in the third mode. 
A 12% reduction in the third-mode frequency was recorded 
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Fig. 8 Variation of natural frequency of first mode with joint 
looseness and amplitude of oscillation . 
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in test 3 when exciting the vehicle normal to the test plane of 
tests 1 and 2. The reduction in frequency for motions in the 
90" plane was consistent for all three modes. A shift in third- 
mode frequency of approximately 6% was attributed to 
changing the lower support location. It was observed con- 
sistently that all modes displayed decreases in frequency as 
the lower support position was moved toward the nodal points 
of the modes. 

The observed variations in the measured values of the 
natural frequencies are probably due to the nonlinearities of 
the vehicle and limitations on obtaining sharp peak responses 
of the build-up structure. 

The high length-to-diameter ratio of the test vehicle imple- 
ments the belief that, for the three modes investigated, rotary 
inertia and shear omissions in the calculations could hardly 
account for the difference observed in the frequencies of the 
second and third modes. Furthermore, the errors introduced 
by the process of lumping the masses are unlikely the source, 
since such effects should be well below 1%. The previously 
mentioned rule, 13(n)1'3, for determining the number of 
masses compatible with a 1% error indicated that 19 masses 
would have been sufficient for controlling errors to within 1%. 
The use of 31 masses in the analysis should limit errors due to 
the discrete mass representation of the continuous system to 
considerably less than 1%. 

It then appears that the differences between the measured 
and calculated natural frequencies are probably due to the 
inadequate analytical representation of the vehicle's stiffness 
properties. This is reasonable to expect in light of the ex- 
treme complexity of the structure of a typical space vehicle 
and always will be a fertile source of error which will vary 
considerably with the skill and intuition of the analyst. No 
generalization can be made as to the influence of inadequate 
representation of structural and mass characteristics on the 
-7" A U u s  7.1 n11 

a given mode depends strongly upon the location of such 
errors. For instance, an overlooked region of flexibility will 
not alter the frequency of a mode if it  coincides with, or is 
near, an inflection point, but it can have a large effect on 
another mode where such favorable conditions do not exist. 

It should also be noted that complicated structures of the 
type of the test vehicle frequently exhibit flexural nonlinearity 
to some degree. I n  conq)aring the measured results with the 
results of the calculations based on an assumed linear system, 
the best agreements arc generally to be expected for the lowest 
amplitudes of oscillations. No strong correlation of this 
nature can be drawn, however, from the results of the tests 
reported herein, since the different levels of excitation effected 
increases in frequency with increases in driving forces in some 
cases and reduction in frequency in others. From the data 
presented and discussed in the following section, with loose- 
ness existing in the joint, the frequency-amplitude relation- 
ship appears to be of the expected behavior. The decrease in 
frequency with increase in the amplitude of oscillation for the 
low-level vibration is in agreement with the behavior of some 
nonlinear systems. Another indication of nonlinear system 
was exhibited, in tuning the system to a particular mode, by a 
jump from a high amplitude of oscillation to a lower amplitude 
as the frequency was varied. Care was taken in tuning the 
system to obtain the maximum amplitude of oscillations. 

modes, since the significance of such discrepancies on 

Effects of Joint Looseness and Amplitude of Oscillation 

The effects of looseness in the screw joint between the 
second and third stages on the first natural frequency of the 
test vehicle are indicated on Fig. 7 as a function of amplitude 
of oscillation. The frequency data obtained for various 
amounts of joint looseness are shown as the open symbols 
with curves faired through the data to emphasize trends. 

As the amplitude of oscillation (measured by the ac- 
celerometer nearest the exciter) is increased, the natural fre- 
quency a t  first decreases and then a t  larger amplitudes in- 

creases. This behavior is attributed to the nonlinear charac- 
teristics of the loose joint. For small amplitudes of oscilla- 
tion, the weight of the upper stages holds the screw threads 
firmly in contact throughout a cycle, and the natural fre- 
quency is therefore essentially the same as for the tight joint. 
At larger amplitudes of oscillation, the joint is rocked back 
and forth through the free play of the loose threads, which re- 
sults in an effective reduction in stiffness with a related re- 
duction in frequency. For large amplitudes of oscillation, 
the backlash contribution to deflection becomes a secondary 
part of the total flexure, and the natural frequency approaches 
the initial value for the tight joint. 

A cross plot of the data of Fig. 7 is presented as Fig. 8. 
These curves clearly show the variation in frequency with un- 
winding in the joint between the second and third stages of the 
vehicle. It is interesting to note that partial recovery in fre- 
quency is observed for the larger values of unwinding in- 
vestigated. 

Studies similar to those for which the results are given in 
Figs. 7 and 8 were made also for unwinding of the joint be- 
tween the first and second stages of the test vehicle. The 
trends were in all respects similar to the variations observed 
for the joint between the second and third stages discussed 
previously. 

Conclusions 

As a result of the experimental and analytical investigation 
of the vibration characteristics of the four-stage solid propel- 
lant vehicle reported herein, the following conclusions can be 
made : 

1) The results show that the averages of the measured 
natural frequencies are within 1, 8, and 12% of the calculated 
frequencies for the first, second, and third modes, respec- 
tively. 

2) The mode shapes of the first three modes were ac- 
curately predicted by the analytical procedure presented. 

3) Variations in the location of the lower suspension 
system clamp on the vehicle, in relation to the nodal points, 
did not appreciably affect the free-free natural mode shapes 
and frequencies for the first and second modes. A small 
sensitivity to its position was observed by the associated 
changes in the value of the third natural frequency. 

With loose interstage connections, the frequency de- 
pendency upon amplitude is typical of the nonlinear behavior 
associated with systems having free play. As the amplitude 
is increased gradually, the natural frequency first decreases 
and then increases to the extent that, for the larger ampli- 
tudes tested, the frequency had increased almost to the values 
obtained for the tight system. 

Reductions in the natural frequency of the first mode 
of up to 20% were noted during unwinding of the screw joints 
between the second and third stages. This natural frequency 
of the vehicle tended to decrease with initial unwinding of the 
screw joint between stages and then indicated a partial re- 
covery toward its initial value for the larger angles of unwind- 
ing. 

6) The structure, although designed to be geometrically 
symmetrical about the longitudinal axis, showed a small but 
consistent difference in the vibration characteristics of the 
first three modes for tests in longitudinal planes 90" with 
respect to each other. This unsymmetrical behavior indicates 
that the inherent influences of tolerances and fabrication 
effects might produce unpredictable variations in frequencies 
of several percent in theoretically similar vehicles. 

It is felt that  the differences between measured and 
computed frequencies primarily are due to the differences be- 
tween the actual mass and stiffness of the vehicle and the 
corresponding values used in the computations. These param 
eters are difficult to define in complicated space vehicles and 
are subject to considerable variatior$iue to the individual in- 
terpretation of the structural load paths. 

4) 

5) 

7) 


